

00404039(94)01517-1

7,10-DITHIAFLUOROANTHENE AND ITS CATION RADICAL SALT

Hiroyuki Tani,^a Yoshihiro Kawada,^a Nagao Azuma,^b and Noboru Ono^c

aAdvanced Ins~ntation **Center for** *Chemical Analysis. Ehime Universiry, Mamyama 790, Japan bDepartment of Chemistry, Faculty of General E&xtion, Ehime University, A4~uyama 790. Japan CDeparbnent of Chemistry, Faculty of Science, Ehime Universiry,* **Marruyama** *790, Japan*

Abstract: The fast 7.10-Dithiafluoroanthene has been prepared from acenaphthenone in three steps. via ring expansion reaction of acenaphthenone etbylenedithioacetal. It was shown to be good x-donor and form highly conducting cation radical salts with PFg. X-ray crystallographic analysis of the salt showed columnar stack structure of donors and the salt showed high electrical conductivity at room temperature.

Simple arenes such as naphthalene. fluoroanthene, perylene, and pyrene give electrically conducting cation radical salts $[Aryl_2]+X^-$ by anodic oxidation.¹ Replacement of the sp² carbon atoms in these arenes by **sulfur atom brings about remarkable improvement in electrical properties of their charge transfer (CT)** complexes and cation radical (CR) salts. For example, the CT complexes of 3,10-dithiaperylene (1) and 1,6dithiapyrene (2) show very high conductivity.² Therefore, thial uoroanthene is also a good candidate as a **new effective x-donor. Here we report on the synthesis and physical properties of the first example of 7.10 dithiafluoroanthene (3) as well as its highly conductive CR salt_**

The synthetic approach to 3 is summarized in Scheme 1. Compound 3 was synthesized from acenaphthenone (4) as a starting material in three steps. 1.2-Ethylenedithioacenaphthylene (6) was prepared by the ring expansion reaction of acenaphthenone ethylenedithioacetal (5). which was easily available by dithioacetalization of 4,³ on treatment with tellurium tetrachloride in dichloromethane.⁴ The subsequent dehydrogenation of 6 with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDO) gave 3 in 56% yield.

Scheme 1. Reagents and conditions: i) (CH₂SH)₂, AlCl₃/CH₂Cl₂, 82%; ii) TeCl₄/CH₂Cl₂, 80%; iii) DDQ/1,4-dioxane, 56%

The cyclic voltammogram of 3 [platinum electrode versus SCE; electrolyte tetra(n-butyl)ammonium perchlorate (0.1 M) in acetonitrile, scan rate 50 mV s⁻¹] showed reversible first oxidation potential (E_{1/2}) +0.68 V), and irreversible second oxidation potentials (E_{1/2} +1.42 V). The preparation of the CR salt of 3 was carried out by electrocrystallization. When the solution of 3 in dichloromethane was electrooxidized by platinum electrodes in the presence of tetra(n-butyl)ammonium hexafluorophosphate as supporting electrolyte, black long needles grew on the anode. The composition of the salt was determined to be (3)₂PF₆ by elemental analysis.⁵ The salt was stable for more than several weeks at room temperature.

Fig. 1. Molecular structures of 3 (a) in neutral state and (b) in the PF6 salt. (The hydrogen atoms are omitted.)

The crystal structure of $(3)_2PF_6$ was determined by means of X-ray diffraction at room temperature; C₂₈H₁₆S₄PF₆ = 625.64, monoclinic, C₂lc, a = 6.953(3), b = 29.959(7), c = 12.619(3) Å, β = 104.99(2)°, V = 2539(2) Å³, D_{calc} = 1.636 g cm⁻³, Z = 4, reflection/variable = 7.22, and R = 0.047.⁶ The only one 3 is crystallographically independent and the PF₆ \sim anion is on twofold rotation axis. The donor skeleton in the salt is planar and is different from the neutral one $(Fig. 1)$.⁷ The fluorine atoms of anions are disordered. The

molecular packing is shown in Fig. 2. The columnar stack of the donor is found along the a axis, where a **small degree of alternating intermolecular separation is appeared in the column. The vinylenedithio moieties** are partially overlapped in the column with S...S contacts $(d_1 = 3.509(2)$ Å and $d_2 = 3.516(2)$ Å), which are **shorter than the sum of van der Waals radii (3.7 Å). The similar S...S contacts (** $d_3 = 3.528(2)$ **Å) are** observed between the columns. Thus $S...S$ networks exist along not only the a but also the c direction. This structure would show quasi two dimensional conductive nature parallel to the ac plane.

Fig. 2. Crystal structure of $(3)_2$ PF₆ viewed along (a) the a axis and (b) the c axis. (The hydrogen atoms are omitted.)

Electrical conductivity of the salt was measured by compressed pellets by a four probe method. $(3)_2PF_6$ showed relatively high electrical conductivity of σ $= 5 S cm⁻¹$ at room temperature. The **temperature dependence of the single crystal conductivity of (3)2PP6 was measured along the needle (a direction) by a two probe method and exhibited metallic behavior down to 240 K (Fig. 3).**

Additional chemical modifications of this new donor and formation of charge transfer complex with another acceptors are now in progress.

Fig. 3. Temperature dependence of the resistivity of $(3)_2$ PF₆ **(Measured on a single crystal by a two-probe method.)**

Acknowledgment: This work was partially supported by a Grant-in-Aid for Scientific Research No. 05740434 from the Ministry of Education. Science and Culture. Japan.

References **and Notes**

- 1. **C. KrOhnke,** V. Enkelman, and G. Wegner, Angew. Chem, In& *Ed Engl.,* **19,912** (1980).
- 2. K. Nakasuji, H. Kubota, T. Kotani, I. Murata, G. Saito. T. Inoki. K. Imaeda, H. Inokuchi, M. Honda, C. Katayama, and J. Tanaka, J. Am. Chem. Soc., 108, 3460 (1986) and references therein.
- 3. B. S. Ong, *Tetrahedron Lett.*, 21, 4225 (1980).
- 4. H. Tani, T. Inamasu, R. Tamura, and H. Suzuki, *Chem. Lett.*, 1990, 1323; H. Tani, K. Nii, K. Masumoto. N. Azuma, and N. Ono, *Chem Lett.,* 1993, 1055; H. Tani, K. Masumoto, N. Axuma, and N. Ono, *Chem. Lett.*, 1994, 779.
- 5. A solution of 3 (0.2 mmol) in dichloromethane (30 ml) containing tetra(*n*-butyl)ammon hexafluorophosphate (1.2 mmol) was cooled to -30 'C and electrolyxed using a divided electrolytic cell between platinum electrodes by constant low current density $(2 \mu A \text{ cm}^{-2})$. Black long needles grew on the anode. Elemental analysis of $(3)_2PF_6$. Found: C, 53.96; H, 2.52%. Calcd for C₂₈H₁₆S₄PF₆: C, 53.75; H, 2.58%.
- 6. The *X-ray* diffraction data were collected by using a Rigaku automated four-circle diffractometer with MO K α radiation monochromatized by graphite (λ (Mo K α) = 0.71069 Å, 2 θ - ω scans, 2 θ_{max} = 55°). The crystal structure was solved by direct method and refined by full-matrix least-squares method. The final atomic coordinates have been deposited at the Cambridge Crystallographic Data Centre.
- 7. The X-ray diffraction data were collected with Cu K α radiation monochromatized by graphite (λ (Cu K α) = 1.54178 Å, 2 θ - ω scans, 2 θ_{max} = 123°), and the solution and refinement of the crystal structure were achieved by the same procedure as above. 6 'Ihe atomic deviations of 8- and 9-carbon atom of 3 in **neutral** state are 0.7950 and 0.7978 Å from the molecular plane, respectively. The dihedral angle between acenaphthylene and vinylenedithio plane is 36.51° . Crystal data of 3: C₁₄H₃S₂ = 240.34, monoclinic $P2_1/c$, $a = 9.408(2)$, $b = 11.129(2)$, $c = 10.822(2)$ A, $\beta = 98.58(1)$ ^o, $V = 1120.5(4)$ A³, $D_{calc} = 1.425$ g cm-3, Z = 4, reflection/variable = 8.78, and *R =* 0.038.
- 8. Physical properties of new compounds are as follows: 3: 56%; mp 92-94 °C (from hexane-dichloromethane); ¹H NMR (CDCl₃) δ = 6.26 (2H, s), 7.44 (2H, dd, $J = 2.7$ and 6.1 Hz), 7.47 (2H, dd, $J = 2.7$ and 6.1 Hz), 7.71 (2H, dd, $J = 2.1$ and 6.1 Hz); ¹³C NMR (CDCl₃) δ = 119.61, 120.50, 127.44, 127.56, 127.65, 129.46, 136.21; IR (KBr) 3032, 1476, 1428, 1134, 818. 768, 650, 566 cm-l. MS (20 eV) m/z (ret intensity) 240 (M+. lOO), 208 (20). 164 (23); HRMS (70 eV) Found: 240.0063. Calcd for C₁₄H₈S₂: 240.0067. Found: C, 69.43; H, 3.41%. Calcd for C₁₄H₈S₂: C, 69.97; H, 3.35%.

5: 82%; mp 57-58 °C (from hexane-dichloromethane); ¹H NMR (CDCl₃) δ = 3.55 (4H, d, J = 1.2 Hz), 4.13 (2H, s), 7.1-7.8 (6H, m); ¹³C NMR (CDCl₃) δ = 41.50, 55.43, 69.64, 119.25, 120.25, 122.78, 124.53. 128.03, 128.30. 130.68, 136.12, 140.27.146.76; IR (KBr) 3040, 2904, 1364, 1278, 1210. 1102.970,958, 884,850,824.752,564 cm-l: MS (20 eV) m/z (ml intensity) 244 (M+, 65). 216 (100). 184 (99), 152 (65); HRMS (70 eV) Found: 244.0343. Calcd for C₁₄H₁₂S₂: 244.0380. Found: C, 68.84; H, 5.01%. Calcd for C₁₄H₁₂S₂: C, 68.81; H, 4.95%.

6: 80%; mp 135-137 °C (from hexane-dichloromethane); ¹H NMR (CDCl₃) δ = 3.41 (4H, s), 7.41 (2H, dd, $J = 1.5$ and 7.0 Hz), 7.45 (2H, t, $J = 7.0$ Hz), 7.65 (2H, dd, $J = 1.5$ and 7.0 Hz); ¹³C NMR $(CDC13)$ $\delta = 26.71$, 118.80, 123.75, 126.15, 127.35, 127.49, 138.89; IR (KBr) 1470, 1460, 1430, 1410. 1285, 1245, 1185.1140,817,736 cm-l; MS (20 eV) m/z (rel intensity) 242 (M+. 97). 214 (100) 170 (42), 126 (11); HRMS (70 eV) Found: 242.0233. Calcd for C₁₄H₁₀S₂: 242.0224. Found: C, 69.03; H, 4.21%. Calcd for C₁₄H₁₀S₂: C, 69.38; H, 4.16%.

(Received in Japan 28 April 1994; *accepted 20 June* 1994)